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We propose a two-dimensional model of three-dimensional Rayleigh–Bénard con-
vection in the limit of very high Prandtl number and Rayleigh number, as in the
Earth’s mantle. The model equation describes the evolution of the first moment of
the temperature anomaly in the thermal boundary layer, which is assumed thin with
respect to the scale of motion. This two-dimensional field is transported by the ve-
locity that it induces and is amplified by surface divergence. This model explains the
emergence of thermal plumes, which arise as finite-time singularities. We determine
critical exponents for these singularities. Using a smoothing method we go beyond
the singularity and reach a stage of developed convection. We describe a process of
plume merging, leaving room for the birth of new instabilities. The heat flow at the
surface predicted by our two-dimensional model is found to be in good agreement
with available data.

1. Introduction
Thermal plumes are ubiquitous in convection at high Rayleigh number, far from the

threshold of instability (e.g. Nataf 1991; Siggia 1994). The development of a convective
plume from a localized source is a well-known process, and self-similar solutions of
the equations of motion are available (Batchelor 1954; Sparrow, Husar & Goldstein
1970; Moses, Zocchi & Libchaber 1993; Olson, Schubert & Anderson 1993). However
the emergence of a plume from a uniformly heated surface is not clearly understood.
Plumes are strongly nonlinear structures, out of reach of perturbative methods on the
instability modes. Modelling the statistics of plume production and interactions is a
challenge, and it is a central issue for predicting the heat flux average and its variability.

The aim of the present paper is to propose a model for the emergence of con-
vective plumes and their further interactions. Our main assumptions are that the
fluid interior is well mixed, and temperature anomalies are restricted to a thermal
boundary layer, which is thin in comparison with horizontal scales. This condition
can be always satisfied for an appropriate initial condition: starting from a fluid at
uniform temperature, we suddenly impose a different surface temperature θS (with a
perturbation at large scale to initiate the instability). Then temperature diffuses within
a thin boundary layer until convection is initiated, and thermal plumes emerge as
singularities arising after a finite time in our boundary layer approximation.

Then the approximation breaks down: plumes are fully developed and feed the
interior with temperature anomalies. However, we shall still capture the main features
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of the dynamics with an appropriate phenomenological smoothing of the singularities.
The further plume interactions will be described and the mean heat flux will be
obtained by a numerical model with reduced dimensionality: a two-dimensional
model on the horizontal heated surface represents the three-dimensional convection.

The development of a thermal plume is driven by the nonlinearity in the heat
transport equation, rather than by hydrodynamic turbulence, so this phenomenon
can be conveniently analysed in the limit of high Prandtl number, for which inertia
is neglected. We therefore restrict our study to this limit of high Prandtl number, and
we furthermore assume a free surface condition.

This convection regime (Ra � 1, Re � 1 and Pr � 1) corresponds to that of
the silicated parts of Earth-like planetary interiors (e.g. Bercovici, Ricard & Richards
1998); as an example, for the Earth’s mantle, i.e. the outer 3000 km of our planet,
Ra = 108, Re = 10−15 and Pr = 1023.

In such planetary interiors, the viscosity increases by many orders of magnitude
in the relatively thin upper layers, due to the lower temperature. Describing this
rapid variation of viscosity with depth is a severe difficulty for full three-dimensional
convective models. In our boundary layer model, this effect shows up instead as
a viscosity of the ‘surface skin’. Various rheologies of this surface skin could be
implemented as well, accounting for the formation of rigid plates with complex
fracturation properties, which are still out of reach of current convection models.

The general idea of this paper is to reduce the dimensionality of a convective system
by integration of the dynamic equations across the boundary layers. Such a procedure
has been fruitfully used to investigate the dynamics of bubbles (e.g. Pozrikidis 1992)
or the situations more akin to thermal convection such as Rayleigh–Taylor instability
(Canright & Morris 1993) and Marangoni convection (Thess, Spirn & Jüttner 1997).
It is also a classical method in the geophysical literature to study the equilibrium of
tectonic plates (Vilotte & Daignières 1982; England & McKenzie 1982; Houseman &
England 1986; Bird 1988). However, the application to Rayleigh–Bénard convection
where both the mechanical and thermal equations are integrated has never been done
before and allows us to describe mathematically the destabilization of the thermal
boundary layers qualitatively explained by Howard (1966).

In next section, we present our boundary layer model. We first derive general rela-
tionships valid for any rheology, and then specify the model for a Newtonian fluid. We
find that the effect of buoyancy in the thermal boundary layer results in a horizontal
stress acting on the interior flow. This stress has formal similarities with surface tension
effects in Marangoni convection, as analysed by Thess et al. (1997). In their model,
the surface temperature field induces a surface velocity field, obtained by solving the
Stokes problem in the interior, with the boundary condition given by the viscous stress
at the surface. Therefore the surface temperature is transported by a velocity which
depends linearly, but non-locally, on the temperature field. The ‘closure relationship’
relating the surface velocity to temperature has a simple expression in Fourier space
(but is non-local in real space). We find the same closure relationship as in the
Marangoni case, but the active quantity is the first moment of the temperature in the
boundary layer, instead of the surface temperature. This quantity is transported like
temperature, but with an additional production term, which leads to the onset of singu-
larities with infinite values, representing the thermal plumes. In Marangoni convection,
the temperature instead remains finite, but its spatial derivatives become singular.

In § 3, we study the initial growth of our boundary layer by a linear stability
analysis. In § 4 we discuss in detail the closure relationship giving the velocity field
induced by different temperature fields. The properties of the singularities generated
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in the model is discussed in § 5. Finally in § 6, we propose a simple phenomenological
smoothing of the singularities, allowing a permanent convective regime to be reached.
Plumes (smoothed singularities) are observed to merge under the effect of their
induced velocity field, and new plumes are formed between existing ones. We extend
the model to two dimensions, representing three-dimensional convection, with the
formation of convective lines. The averaged heat flux is also calculated, and found to
be in good agreement with numerical results in the literature.

2. A two-dimensional model of three-dimensional Rayleigh–Bénard
convection

2.1. The three-dimensional model

We study thermal convection driven by buoyancy forces in the Boussinesq approxi-
mation. We assume that the Prandtl number, i.e. the ratio between the kinematic
viscosity ν and thermal diffusivity κ, is very large so that the Reynolds number is
very small. In these conditions, the equations controlling the dynamics are

∇ · v = 0, (2.1)

∇ · τ + ρg = 0, (2.2)

∂θ

∂t
+ (v · ∇)θ = ∇ · (κ∇θ). (2.3)

They express respectively the conservation of mass, the balance of forces (neglecting
inertia), and the heat transport. τ denotes the total stress tensor, which will be related
to the velocity v by an appropriate rheology, and g the acceleration due to gravity.
Equations (2.2) and (2.3) are coupled as the density ρ varies with temperature θ as
ρ = ρ0(1− αθ), with αθ � 1.

We consider for simplicity a uniform gravity (although our method readily extends
to a spherical geometry). The surface is supposed infinite in the horizontal directions
x and y. The z-axis is directed downward and the convective system extends infinitely
in the direction of positive z. The motion is driven by temperature anomalies near
the surface, while the deep interior is supposed at uniform temperature. We choose
this temperature as the reference temperature, so that θ → 0 for z → +∞ and θ
reaches θS , which is negative, at the surface. Furthermore, since the motion is damped
in the deep interior (z → +∞), the stress tensor reduces asymptotically to a pressure
p0, τij → −p0δij , and equation (2.2) reduces to the hydrostatic relation ∇p0 = ρ0g, or
p0 = ρ0gz. The origin of the coordinate z is chosen in order to cancel the constant of
integration which should appear in this expression. In other words, the free surface
is at z = 0 in the reference state with θ = 0 everywhere. We express the stress tensor
τ as the sum of the reference hydrostatic pressure and a stress τ ′, which is driven by
the temperature heterogeneity θ and vanishes at large depth,

τij = τ′ij − ρ0gzδij . (2.4)

In summary, the conditions in the deep interior are

v → 0, τ′ij → 0, θ → 0 for z → +∞. (2.5)

For motion with sufficiently large horizontal scales, the stress τ ′ reduces to the
hydrostatic pressure associated with the temperature heterogeneity θ. Its typical value
is ρ0gαθH , where H is the thickness of the thermal boundary layer, much smaller
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than the horizontal scale of motion L. The hydrostatic balance provides in all cases
a first-order estimate of the stress τ ′,

|τ ′| = o(ρ0gαθH)� ρ0gH. (2.6)

Owing to the temperature heterogeneity θ, the free surface is slightly deformed, to
a ‘depth’ z = −h(x, y), much smaller than H , and the normal n to the surface is nearly
vertical. The free surface condition imposes that the normal components of the total
stress tensor vanish, τ ′ · n+ ρ0ghn = 0. With the estimate (2.6) for |τ′|, it results that
h/H ∼ αθ. We can therefore take the stress tensor τ ′ at z = 0 for the free surface
condition, within an error of order (αθ)2 (as estimated by linearizing τ ′ with respect
to z). Furthermore, the slope nx/nz (or ny/nz) is of order h/L = αθH/L, and it can
be safely neglected, so we can write the free surface conditions as

τ′xz(x, y, 0) = τ′yz(x, y, 0) = 0, (2.7)

τ′zz(x, y, 0) = −ρ0gh(x, y). (2.8)

This provides a free slip condition at z = 0 for the tangential stresses, while the
normal component τ′zz determines the weak topography h(x, y). In addition to these
dynamical conditions, we have the kinematic condition for a material surface, which
reduces to

vz(x, y, 0) = 0 (2.9)

within our approximations.
In summary, the three components of the equation of motion (2.2) are

∂xτ
′
xx + ∂yτ

′
xy + ∂zτ

′
xz = 0, (2.10)

∂xτ
′
yx + ∂yτ

′
yy + ∂zτ

′
yz = 0, (2.11)

∂xτ
′
zx + ∂yτ

′
zy + ∂zτ

′
zz = ρ0αgθ. (2.12)

They must be solved together with (2.1) and (2.3), using the appropriate rheology,
and with the boundary conditions (2.5), (2.7), (2.8) and (2.9).

2.2. Integration of the stress across the boundary layer

The thermal boundary layer entrains the interior like a ‘skin’ driven by gravity effects,
and this process can be described by integrating the equations of motion across the
boundary layer. We denote X the z-integrated value of a quantity X, from z = 0
to the depth Z . We first get exact equations, but will then assume that Z is much
smaller than the horizontal scale of motion L, while beyond the boundary layer
(where θ ≈ 0), H . Z � L.

Such a vertical integration, applied to the vertical component of the equation of
motion (2.12), yields, using the free surface condition (2.8),

∂xτ̄
′
zx + ∂yτ̄

′
zy + τ′zz + ρ0gh = ρ0gαθ, (2.13)

giving the topography −h(x, y) from the dynamical variables. Applying this relation
to the deep interior, z → +∞, τ′zz vanishes. For sufficiently large scales, the horizontal
derivatives become negligible, and (2.13) reduces to h = αθ̄, which simply expresses
the Archimedes principle, also called isostasy among geophysicists.

To get a constraint on the dynamical variables, we multiply all terms of (2.12) by
z before the vertical integration, yielding

∂xzτ′zx + ∂yzτ′zy + Zτ′zz − τ̄′zz = ρ0gαzθ (2.14)
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(where we have used an integration by parts for the term in τ′zz). The last term of
the left-hand side dominates the three first terms. Therefore, relation (2.14) relates the
average vertical stress in the boundary layer to the first moment of the temperature.
This behaviour has already been emphasized in the geophysical literature and equation
(2.14) has been sometimes called ‘stress moment law’ (Fleitout & Froidevaux 1982,
1983; Ricard, Fleitout & Froidevaux 1984).

We similarly integrate the horizontal components (2.10) and (2.11) of the momen-
tum equation, using the free surface condition (2.7),

∂xτ′xx − τ′zz + ∂yτ′xy + τ′xz = −∂xτ′zz, (2.15)

∂xτ′xy + ∂yτ′yy − τ′zz + τ′yz = −∂yτ′zz. (2.16)

We have written the two equations so that their left-hand sides depend only on the
deviatoric part of the stress tensor, which will be related to the velocity once the
rheology is specified (in other words the pressure term has been eliminated on the
left-hand side).

The right-hand sides of (2.15) and (2.16) can be related by (2.14) to the temperature
moment, which we define as

M ≡ −zθ (2.17)

≡ −
∫ ∞

0

zθ dz, (2.18)

the minus sign is introduced to make M positive in the convection problem. Then
(2.15) becomes

τ′xz + Z∂xτ
′
zz + ∂xτ′xx − τ′zz + ∂yτ′xy + ∂x∂xzτ′zx + ∂x∂yzτ′zy = −ρ0gα∂xM. (2.19)

All terms on the left-hand side depend only on the deviatoric part of the stress
tensor, except the second term Z∂xτ

′
zz . We can rearrange this term by writing ∂xτ

′
zz =

∂x(τ
′
zz−τ′xx)+∂xτ

′
xx, and, using (2.10), ∂xτ

′
xx = −∂yτ′xy−∂zτ′xz . Introducing this in (2.19),

and repeating the same procedure for the y-component, (2.15) and (2.16) transform
into

τ′xz − Z∂zτ′xz + ∂x[τ′xx − τ′zz − Z(τ′xx − τ′zz)] + ∂y[τ′xy − Zτ′xy]
+∂x∂xzτ′zx + ∂x∂yzτ′zy = −ρ0gα∂xM, (2.20)

τ′yz − Z∂zτ′yz + ∂y[τ′yy − τ′zz − Z(τ′yy − τ′zz)] + ∂x[τ′xy − Zτ′xy]
+∂y∂yzτ′zy + ∂x∂yzτ′zx = −ρ0gα∂yM, (2.21)

which provide exact relations between the deviatoric part of the stress tensor, inte-
grated over the ordinate range [0, Z ], and the first temperature moment M.

The left-hand side of these equations is clearly dominated by the first term, the other
terms bringing corrections with relative magnitude Z/L and (Z/L)2 (remembering
that X ∼ ZX). Thus (2.20) and (2.21) state that at first order the thermal boundary
layer drives the interior flow with a horizontal surface stress (τ′xz, τ′yz) proportional to
the gradient of M on the surface. This is analogous to the free surface condition in
Marangoni convection, for which M should be replaced by the surface temperature.
Furthermore, we shall see in § 2.4 that M is advected by the horizontal flow, like
a temperature (however there is an additional production term for M, proportional
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to the horizontal flow divergence, so the analogy with Marangoni convection is not
exact).

Before proceeding further, it is useful to consider corrections of order Z/L on
the left-hand side of (2.20) and (2.21). The second term −Z∂zτ′xz can be viewed as
a correction to linearly extrapolate τ′xz from its value at depth z = Z to z = 0.
Therefore the boundary layer really acts as a surface skin at position z = 0, instead
of the arbitrary position Z . The next two terms are related to horizontal shear effects,
describing an horizontal viscosity of the surface skin. Finally, the last two terms are
clearly of order (Z/L)2 with respect to τ′xz or τ′yz , and can be neglected.

To get explicit results, we now assume a Newtonian rheology, with a viscosity η,

τ′ij = η(∂ivj + ∂jvi)− pδij . (2.22)

This viscosity is possibly non-uniform in the boundary layer, beyond which it reaches
a uniform value η0. We introduce the relative excess ‘surface’ viscosity

σ =

∫ Z

0

η(z)− η0

η0

dz, (2.23)

which becomes independent of the upper bound Z when it is beyond the boundary
layer (since the integrand tends to 0). Introduction of this rheology in (2.20) and (2.21),
expressing ∂zvz = −∂xvx − ∂yvy from the incompressibility condition, and considering
that vx and vy cannot depend on z over the boundary layer at first order, we get

−∂zvx − 2∂x[σ(2∂xvx + ∂yvy)]− ∂y[σ(∂xvy + ∂yvx)] =
ρ0gα

η0

∂xM, (2.24)

−∂zvy − 2∂y[σ(2∂yvy + ∂xvx)]− ∂x[σ(∂xvy + ∂yvx)] =
ρ0gα

η0

∂yM. (2.25)

The first terms of these two equations, ∂zvx and ∂zvy provide the stresses transmitted
to the interior, i.e. the z-derivatives of the horizontal velocities for the internal flow
taken at z = 0. These stresses are non-zero even though vx and vy in the boundary
layer do not depend on z at first order.

As is usual in fluid dynamics, we can decompose the horizontal strain into a
traceless strain tensor T and a horizontal divergence,

Txx = −Tyy = ∂xvx − ∂yvy, (2.26)

Txy = Tyx = ∂xvy + ∂yvx. (2.27)

Then, denoting the horizontal velocity vector by vH and the horizontal nabla operator
by ∇H , equations (2.24) and (2.25) can be written as

−∂zvH − ∇H · (σT )− ∇H (3σ∇H · vH ) =
ρ0gα

η0

∇HM. (2.28)

It provides boundary conditions at z → 0 for the interior flow. The effect of the
boundary layer on the interior is therefore equivalent to a surface skin providing a
stress proportional to the horizontal gradient of M, with a two-dimensional shear
viscosity ση0 and a compressional viscosity 3ση0.

2.3. The interior flow

In the interior, the temperature heterogeneity θ vanishes, and we assume a constant
viscosity η0, so that the momentum equation (2.2) reduces to the Stokes equation,

η0∇2v − ∇p = 0. (2.29)
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This equation must be solved, together with the incompressibility equation (2.1), with
the conditions of decaying motion at z → +∞, and the boundary conditions at z = 0
provided by (2.28).

This problem is classically solved (see Chandrasekhar 1981) in terms of the vertical
velocity vz and vertical vorticity Ωz = ∂xvy − ∂yvx. These two quantities determine
the poloidal and toroidal parts of the velocity field respectively, i.e. the Helmholtz
decomposition of the horizontal velocity projection vH in each horizontal plane,

vH = ∇Hφ− ez × ∇Hψ, (2.30)

where the first term is irrotational and the second term is non-divergent (ez is the
vertical unit vector). The two scalars φ and ψ are obtained from vz and Ωz by solving
the Poisson equations, obtained by taking the horizontal divergence and the curl of
(2.30) respectively,

∇2
Hφ = −∂zvz, (2.31)

∇2
Hψ = −Ωz. (2.32)

For a velocity field with a harmonic horizontal dependence, v = v̂(z)eik · r with k =
(kx, ky), these relations yield (with k ≡ |k|),

v̂x =
i

k2

(
kx

dv̂z
dz

+ kyΩ̂z

)
, (2.33)

v̂y =
i

k2

(
ky

dv̂z
dz
− kxΩ̂z

)
. (2.34)

Taking the curl of (2.29) eliminates the pressure and yields ∇2Ωz = 0, or equivalently

(∂2
z + ∇2

H )Ωz = 0. (2.35)

Taking the divergence of (2.29) yields ∇2p = 0 (taking into account the flow incom-
pressibility). Then taking the Laplacian of (2.29) yields ∇4v = 0, whose z-component is

(∂2
z + ∇2

H )2vz = 0. (2.36)

Solutions with a sine wave horizontal dependence of (2.35) and (2.36), which vanish
for z → +∞, are respectively,

v̂z = uz exp (−kz), (2.37)

Ω̂z = w exp (−kz). (2.38)

Then the horizontal velocity components v̂x and v̂y are obtained from (2.33) and
(2.34).

The boundary condition (2.28) at z = 0 is easily taken into account in the case of a
uniform surface viscosity σ. Taking the horizontal divergence and curl of (2.28) then
yield respectively

η0(∂z + 4σ∇2
H )∂zvz = ρ0gα∇2

HM, (2.39)

(∂z + σ∇2
H )Ωz = 0. (2.40)

Therefore the toroidal mode is not excited by convection for σ uniform (Ωz = 0 every-
where). Introducing expression (2.37) into (2.39) yields 2η0(1+2σk)u = sign(k)ρ0gαkM.
The resulting relationship between the surface velocity and the Fourier transform M̂(k)
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of the temperature moment can be written

v̂H (k) = i
k

2k

1

1 + 2σk

ρ0gα

η0

M̂(k). (2.41)

In this section we have assumed that below the thermal boundary layer the viscosity
is uniform. However it would have been straightforward to develop a model with a
vertically stratified viscosity at depth. For instance, if the interior is layered, equations
(2.35) and (2.36) remain valid in each layer, but continuity of velocities and stresses
must be imposed at each interface. Whatever the viscosity stratification, we would
have obtained a linear relationship between the Fourier components of the surface
velocity and those of the temperature moment with no excitation of toroidal motions.
Thus, with minor modifications, our approach could be applied to planetary interiors
where the viscosity is likely to increase with depth.

2.4. The transport of the first temperature moment

Since temperature acts only through its first moment M, it is useful to get an evolution
equation for this quantity by taking the first moment of (2.3),

∂M

∂t
+ (vH · ∇H )M −

∫ +∞

0

zvz
∂θ

∂z
dz = ∇H (κ∇HM)−

∫ +∞

0

z
∂

∂z

(
κ
∂θ

∂z

)
dz. (2.42)

In this equation we have permuted vH and the vertical integration, assuming that
vH does not depend on z in the boundary layer, which is valid at order (H/L). This
assumption also implies, by integration of the mass conservation equation (2.1), that
vz = −z∇H ·vH . Thus, using integrations by parts, and recalling that both θ and ∂θ/∂z
tend to zero for z → +∞, and that θ = θS at z = 0, we transform (2.42) into

∂M

∂t
+ (vH · ∇H )M + 2M∇H · vH = κ∇2

HM − κθS (2.43)

(assuming κ constant). Therefore we have transformed a three-dimensional problem
with four unknowns, θ and the three components of v (equations (2.1), (2.2), (2.3))
into a two-dimensional problem with three unknowns, M and the two components
of vH . To close the system we need to relate vH to M, using (2.41), which will now be
referred to as the ‘closure law’.

To elucidate the physical meaning of M, we assume that the temperature is simply
described by θ = θS erfc (z/H(x, y, t)), where erfc is the complementary error function,
and H the thickness of the thermal boundary layer. Introduction of this temperature
dependence in the definition of M (2.18) leads to

M(x, y, t) = − 1
4
θSH

2(x, y, t), (2.44)

which shows that (M)1/2 is a measure of the thermal boundary thickness.
The first term of equation (2.43) is equal to 2(M)1/2(∂(M)1/2/∂t) and the second

and third terms can be combined together as 2(M)1/2∇H ((M)1/2vH ) so that equation
(2.43) can be expressed as a transport equation for the quantity (M)1/2.

By integration of this transport equation over the whole surface, we get

d

dt

∫∫
(M)1/2 d2r =

κ

4

∫∫
(∇HM)2

(M)3/2
d2r − κ

2

∫∫
θS

(M)1/2
d2r. (2.45)

We remark that the left-hand side is conserved when κ is zero. This is not surprising
as (M)1/2 is proportional to the thickness of the boundary layer (2.44) and thus (2.45)
expresses the conservation of the boundary layer volume in the absence of diffusion.
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The thermal diffusion increases the volume of the boundary layer by cooling at the
surface, especially when the boundary layer is thin (the term −θS/(M)1/2 is large);
and by lateral diffusion acting on the boundary layer undulations.

In the case σ = 0, the closure law reduces to v̂H = i(k/2k)M̂. This is analogous
to the result of Thess et al. (1997) for Marangoni convection, where M would be
replaced by the surface temperature. However equation (2.43) differs from a usual
transport equation by the term 2M∇H · vH . When instability develops, this term will
be a strong source of M, leading to a peak with diverging M, corresponding to
the emergence of a thermal plume. Thess et al. (1997) also find the development of
singularities in Marangoni convection, but the transported quantity (temperature)
remains bounded.

3. Stability analysis
3.1. Non-dimensionalization

It is convenient to get a non-dimensional version of our dynamical model, defining a
length scale D by

D3 = − η0κ

ρ0gαθS
(3.1)

(θS is negative). This is the thickness for which the Rayleigh number, based on the
vertical temperature difference θS , is unity. The time is then scaled by the diffusive
time scale (D2/κ) and the temperature moment M by −θSD2. Using parameters
applicable for the Earth D would be of order 10 km, the time scale about 3 Myrs and
the moment scale about 1.5× 105 K km2. With this change of variables we obtain

∂M

∂t
+ (vH · ∇H )M + 2M∇H · vH = ∇2M + 1, (3.2)

with

v̂H (k) = i
k

2k

M̂(k)

1 + 2σk
, (3.3)

where for simplicity of notation we have kept the same symbols for the new quantities
which are now without units. In the case σ = 0, the equation becomes universal, i.e.
without any parameters.

We have written a numerical code to solve (3.2) and (3.3). This pseudo-spectral code
uses a fast Fourier transform with at most (512)2 points in one or two dimensions and
assumes periodicity. This code has been parallelized on 16 processors. As an initial
condition we assume that M, either one- or two-dimensional, consists of a small-
amplitude white noise with a positive small average value (M is everywhere positive).
The moment M always follows the typical evolution depicted in figure 1. The average
value of M, 〈M〉 increases linearly with time and its perturbation max |M−〈M〉| starts
to decrease (diffusive regime) then increases slowly (marginal growth) and reaches a
finite-time singularity. The duration of each period depends on the initial conditions
and the values of σ.

3.2. Marginal stability

A first insight into the behaviour of our boundary layer model of Rayleigh–Bénard
convection will be given by a marginal stability analysis. Let us assume that M(x, t) =
M0(t) +m(k, t) cos (kx) with |m| � |M0| and M0(0) = 0, so that we start with a viscous
half-space at zero temperature on which we suddenly impose a negative surface
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Figure 1. Typical evolution of the averaged moment 〈M〉 (dashed line) and the maximum of its
fluctuation max |M−〈M〉| (solid line). 〈M〉 increases linearly with time at the beginning (which is not
obvious in this linear-logarithmic plot). Three phases are seen for the fluctuations: a decrease, a slow
increase, and a finite-time instability. In this simulation we have assumed σ = 0, but qualitatively
the same behaviour is observed for non-zero σ.

temperature. For simplicity, we first assume that σ = 0. By plugging the expression
for M into equations (3.2) and (3.3), linearized with respect to the small amplitude m,
we get

M0(t) = t, (3.4)

∂m

∂t
= k(t− k)m. (3.5)

The growth-rate factor of (3.5) is depicted in figure 2 at a given time. Equation (3.5)
shows that all wavenumbers between k = 0 and k = t are unstable. The most unstable
is the wavenumber km = t/2. The destabilization of the system thus starts at long
wavelength. This justifies our long-wavelength approximation, at least in the initial
stage of the evolution.

Recording that (in real units) M0 ∼ − 1
4
θSH

2 (2.44) where H is the thickness of the
thermal boundary layer, equation (3.4) simply states in real units that

H2 = 4κt, (3.6)

which just expresses the diffusive growth of the thermal boundary layer. The selection
of the most unstable wavenumber can be rewritten

kmH = −1

4

ρ0αgθSH
3

η0κ
, (3.7)

stating that the most unstable wavenumber, normalized by the boundary layer thick-
ness, is one fourth of the local Rayleigh number (which increases with t3/2).

Equation (3.5) can be easily integrated, for a given k:

m(t) = m0 exp [kt( 1
2
t− k)]. (3.8)

The amplitude at any wavenumber first decreases by thermal diffusion then increases
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Figure 2. Growth rate as a function of wavenumber (at a given time t) for a uniform-viscosity
fluid (σ = 0) or with a viscous lid (σ = 1).

when the boundary layer is sufficiently thick to sustain the instability. At a given
time, the wavelength perturbation that has grown most strongly corresponds to
k = t/4. Assuming that in the white-noise initial conditions all wavenumbers had
equal amplitudes, the perturbation maximum is roughly controlled by the wavenumber
that has grown the most; therefore,

max m(t) ∼ m0 exp

(
t3

16

)
, (3.9)

or in real units

max m(t) ∼ m0 exp

(
1

128

H6

D6

)
. (3.10)

This linear analysis is valid as long as |m(t)| � M0(t), i.e. as long as in figure 1 the
continuous line (|m(t)|) stays below the dashed line (M0(t)).

We can verify numerically these analytic solutions. Figure 3 represents the same
data set as figure 1, maxx[M(x, t)], but this time as a function of t3. The numerical
solution shows an excellent fit to the analytical expression.

In the case σ 6= 0, when additional viscous effects are present in the boundary
layer, this marginal stability analysis has to be somewhat modified. The instantaneous
growth rate is decreased together with the range of unstable wavevectors (see figure 2).
Equation (3.9) has to be corrected and one gets at first order

m(t) = m0 exp

(
t3

16

1

1 + σt

)
. (3.11)

This instability growth is therefore slowed down by the effect of a viscous lid and we
see numerically that the time for the singularity to occur increases. Although equation
(3.11) is qualitatively in agreement with the numerical experiments, quantitatively the
agreement is poor as σt becomes rapidly of order unity and a higher-order expansion
should be done.
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Figure 3. Max|M − 〈M〉| as a function of t3. Starting from a white noise, the slope is 1/16
according to equation (3.9).

4. The closure relationship
4.1. Back in real space

From figure 1 or 3, it seems obvious that the system exhibits finite-time singularities.
In order to describe what happens closer to this singularity, we must study in the
real space our closure relationship (3.3). The multiplication of Fourier components
corresponds to a convolution product in real space assuming that the surface of the
fluid is unbounded

vH (r) =

∫∫
K (r − r′)M(r′) d2r′, (4.1)

where K (r) is the Fourier transform of i(k/2k) (1 + 2σk)−1. We will consider the two
limiting cases, σ = 0, and σ � 1.

In the first case, one has v̂H = i(k/2k)M̂, as described by Thess et al. (1997) for
Marangoni convection. In real space the velocity is expressed as

vH (r) = − 1

4π

∫∫
r − r′
|r − r′|3M(r′) d2r′ ≡ V0[M(r)], (4.2)

defining the non-local operator V0 relating the velocity field to the M field. This
integral (4.2) as well as various other integrals that will be used in the next paragraphs
must be understood in terms of Cauchy principal value determination. The kernel
K (r) = −[1/(4π)]r/|r|3 = [1/(4π)]∇(1/r) is formally identical to the Green function
for the Laplacian with forcing at the boundary. The operator V0 is linear and is
invariant for a change of scale r → βr, reflecting the fact that convection in a
half-space (infinite layer) has no internal length scale,

V0[αM] = αV0[M], V0[M(βr)] =V0[M(r)]. (4.3)

In the opposite limiting case σ � 1, the closure relation in Fourier space is
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v̂H (k) = (ik/4σk2)M̂(k). By multiplying this equation by ik, we deduce that

∇H · vH = −M
4σ
, (4.4)

which has the solution

vH (r) = − 1

8πσ

∫∫
r − r′
|r − r′|2M(r′) d2r′ ≡ V∞[M(r)]. (4.5)

Like equation (4.2), the velocity field is related to M by a non-local operator, V∞.
This operator is also linear in M, but it is no longer scale invariant because the
convection system has now an internal length scale as σ has the dimension of a
length,

V∞[αM] = αV∞[M], V∞[M(βr)] = βV∞[M(r)]. (4.6)

The reverse transformation that gives the moment as a function of the surface velocity
is easy to derive in the real space whatever the value of σ. The closure law (3.3) can
also be written

M̂(k) = −2i
1 + 2σk

k
k · v̂H (k), (4.7)

which corresponds to

M(r) = −4V0[v(r)]− 4σ∇vH (4.8)

(note that the operator V0 according to its definition (4.2) either maps a scalar to
a vector or a vector to a scalar, just like the operator ∇). Equation (4.8) means that
the vertical moment of the temperature across the thermal boundary layer can be
estimated from the surface velocity on top of the convective medium.

4.2. Examples of moment–velocity closure relationships

In one dimension, i.e. assuming that vH and M are only functions of x, the expression
(4.2) can be integrated in y, which leads to

vH (x) = 1
2
H[M(x)] =

1

2π

∫ ∞
−∞

M(x′)
x′ − x dx′. (4.9)

where the symbol H stands for the Hilbert transform (Erdélyi 1954). This operator
has the same scaling properties (4.3) as its two-dimensional counterpart.

Hilbert transforms of particular functions are tabulated in mathematical handbooks
(Erdélyi 1954), see also table 1 of Thess et al. (1997). As a simple example of physical
interest, the velocity induced by the field

M(x) =
1

1 + x2
(4.10)

is

vH (x) = − x

2(1 + x2)
. (4.11)

If the vertical temperature moment is restricted to a singular line, i.e. M(x) = δ(x),
the induced velocity is simply

vH (x) = − 1

2πx
. (4.12)

These two solutions are depicted in figure 4(b).
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Figure 4. Examples of one-dimensional closure relationships, for M(x) = 1/(1 + x2) (left-hand
column) and M(x) = δ(x) (right-hand column): (a) M, (b) the corresponding velocity with a
uniform viscosity (σ = 0), and (c) the velocity with a highly viscous lid (σ � 1).

In the case σ � 1, (4.5) integrated in y leads to

vH (x) =
1

8σ

(∫ x

−∞
M(x′) dx′ +

∫ x

∞
M(x′) dx′

)
. (4.13)

The velocity induced by the M field (4.10) is

vH (x) =
1

8σ
arctan (x), (4.14)

represented in figure 4(c). As expected, it is smoother than in the case σ = 0. The
velocity induced by a singular line M(x) = δ(x) is the step function (written with the
Heaviside function H),

vH (x) =
1

4σ
( 1

2
−H(x)). (4.15)

We see that when the role of the highly viscous lid becomes important, a uniform
velocity is induced on each side of the singular temperature source.

We can also express the closure law in a two-dimensional axisymmetric geometry
appropriate to describe plumes. If the vertical temperature moment is restricted to a
singular point, M(r) = δ(r), the equations (4.2) and (4.5) become

vr(r) = − 1

4πr2
, (4.16)
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when σ = 0, and with a highly viscous lid at the surface, σ � 1,

vr(r) = − 1

8πσ

1

r
. (4.17)

As in the Cartesian one-dimensional case, the presence of a highly viscous lid increases
the effect of a perturbation at large distances.

5. Finite-time singularities
Having understood the first stages of the development of an instability we must

now study the behaviour of the finite-time singularities. When a singularity occurs, M
goes to +∞ and the last term of equation (3.2), corresponding to the secular diffusive
increase of the thermal boundary layer, can be safely neglected. In this case we can
search for solutions with separate variables of the form

M(r, t) = (ts − t)aF(χ), (5.1)

where

χ =
(r − rs)
(ts − t)b . (5.2)

The constants a and b are the critical exponents of the singularity that occurs at
position rs and time ts.

As the scaling properties of the operator that relates the moment to the horizontal
velocity depends on the surface viscosity σ, we first present in detail the case σ = 0
and then discuss the role of the surface viscosity. When σ = 0, the operator relating
moment and velocity is V0 (4.3) and by plugging (5.1) into (3.2) we get

−aF + bχ · ∇HF − (ts − t)−2b+1∇2
HF

−(ts − t)a−b+1(V0[F] · ∇HF + 2F∇H ·V0[F]) = 0. (5.3)

Choosing a = − 1
2

and b = 1
2
, this equation becomes time independent, and

M(r, t) =
1

(ts − t)1/2
F

(
r − rs

(ts − t)1/2

)
, (5.4)

is a solution of equation (3.2) when F verifies

F + χ · ∇HF − 2V0[F] · ∇HF − 4F∇H ·V0[F]− 2∇2
HF = 0. (5.5)

The self-similar solution M(r, t) has a maximum divergence as (ts − t)−1/2, and a
width decreasing as (ts− t)1/2. For a line singularity (one-dimensional geometry), with
boundary conditions ∇HF = 0 on the instability and F vanishing at large distance, we
find numerically that the solution for F is unique (its shape but also its amplitude). In
the two-dimensional axisymmetric case, another solution is obtained as the differential
operators entering equation (5.5) are different, but again this axisymmetric solution
with its shape and its amplitude is univocally obtained by (5.5).

Instead of trying to solve the difficult differential equation (5.5), we have computed
numerically in the one-dimensional case M(x, t) for various initial conditions, mea-
sured the position xs and time ts for the first singularity and plotted the quantity
(t− ts)1/2M(x, t) as a function of (x− xs)/(ts − t)1/2 for times t close to ts. The results
depicted in figure 5(a) for four different initial conditions show a universal shape,
when properly scaled. Of course, when plotted with a logarithmic scale (b), the pres-
ence of other weaker growing singularities far from the main one is clearly shown
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Figure 5. Universal shape of the one-dimensional singularity in the case of a constant viscosity. (a)
Four different numerical experiments have been performed and have been rescaled. (b) A vertical
logarithmic scale and a wider spatial extent shows the presence of other singularities in formation.

as secondary peaks. We also run two-dimensional axisymmetric cases, and similar
results are obtained, i.e. the same critical exponents and a unique F solution.

We can use a similar procedure in the case of a highly viscous lid σ � 1, but with
the scaling relationship (4.6). This also leads to self-similar solutions of the form

M(x, t) =
σ

ts − tG
(

x− xs
(ts − t)1/2

)
, (5.6)

where G is another universal function when the geometry, one-dimensional or two-
dimensional, is chosen. The maximum now increases as (ts − t)−1, faster than in the
case without a lid, and its width decreases as (ts − t)1/2.

Figure 6 depicts the same set as in figure 1 but now the behaviour of
log (MaxxM(x, t)) is plotted as a function of log (t − ts). We also show the case
with a highly viscous lid (σ � 1). The theoretical laws with exponents − 1

2
and −1

are closely followed.
The behaviour of M far from a growing instability can be described analytically. In

equation (5.5), the terms associated with cross-products between velocity and moment
(−2V0[F] · ∇F − 4F∇ ·V0[F]) are smaller than the first two terms if V0[F] � χ. In
this case the solutions of (5.5) are F(x) ∼ A/x in the one-dimensional case and
F(r) ∼ B/r in the axisymmetric case. The proportionality constants A and B are not
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Uniform viscosity Highly viscous lid

Line singularity −A ln (x(ts − t)−1/2)

2πx
−A ln (x(ts − t)−1/2)

4σ(ts − t)

Axisymmetric singularity − B
2r

− B

4σ(ts − t)
Table 1. Asymptotic velocity at large distance of a singularity.

arbitrary but are univocally determined by the nonlinearity of the differential equation
close to the singularity. From the shape of the M singularity at large distance, we can
use the closure laws (4.2) and (4.5) to deduce the velocity far from the singularity.
After some algebra we obtain the asymptotic behaviours summarized in table 1.

The results of table 1 indicate that singularities interact at very large distances
and potentially at an infinite distance (highly viscous lid), due to the transport by
their induced velocity. Although in figure 4 the velocity induced by a temperature
moment decreasing asymptotically as 1/x2 remains finite, the natural one-dimensional
singularity in a fluid with a highly viscous lid has a temperature moment decreasing
only as 1/x and therefore induces a velocity diverging as ln(x). Numerically, the forced
periodicity imposed by the use of fast Fourier transforms makes the verification of
these laws difficult.

6. Developed convection
6.1. Regularization of the singularity

When plumes develop, the temperature heterogeneity θ leaves the boundary layer, so
we cannot assume anymore that θ decreases to zero in the range of integration used
to get (2.43). Taking into account the value of θ(Z) at the upper bound of integration



242 C. Lemery, Y. Ricard and J. Sommeria

0

2

4

6

8

10

M

(a)
35

(b)

25

15

5

35
(c)

25

15

5

35
(d)

25

15

5

–30 –10 10 30 –10 10–30 30

xx

M

Figure 7. Growth and dynamics of one-dimensional instabilities, M(x, t) as a function of x at four
different times t: (a) t = 0, (b) 5, (c) 10, (d) 50.

Z , we generalize (2.43) to

∂M

∂t
+ (vH · ∇H )M + (2M + Z 2θ(Z))∇H · vH = κ∇2

HM − κ(θS − θ(Z)). (6.1)

We need to close this equation to determine θ(Z) as a function of the dynamical
variables. At small times, θ(Z) = 0, and we recover (2.43). In the opposite case of
a plume extending beyond the depth Z , the temperature becomes nearly uniform
over the depth Z , so we have Z 2θ(Z) ' Z2θS ' −2M; thus the source terms
disappear in (6.1). We propose an heuristic fit between these two extremes, by writing
(2M+Z2θ(Z))∇H · vH = M[1−tanh(M−Mmax)]∇H · vH , where Mmax = −Z2θS/2. This
provides a regularizing mechanism for the plumes. A corresponding heat injection
should be introduced in the interior, providing an additional source of motion. We
expect this motion to be at fairly large scales, with a weak influence on the plume
dynamics, and we have neglected this modification of the interior in the present study.
We also neglect θ(Z) on the right-hand side of equation (6.1) as this diffusion term is
negligible in plumes in comparison with the other effects.

6.2. Developed convection in the one-dimensional case

With this regularization mechanism, our model can go beyond the first finite-time
singularity and a much more complex dynamics is obtained. Figure 7 shows the
evolution ofM(x) at four different times (one-dimensional case, with uniform viscosity,
σ = 0). In this simulation we have chosen to cut the singularities around Mmax = 30.
The progressive destabilization of the boundary layer starts from panel (a) (t = 0)



Thermal plumes in Rayleigh–Bénard convection at infinite Prandtl number 243

0

10

20

30

40

50
–30 –10 10 30

Positions of line instabilities

T
im

e

Figure 8. Positions of the line instabilities of figure 7 as functions of time.

where the arbitrary initial moment has a Gaussian shape. The reader must however
realize that the equivalent boundary layer thickness, (M)1/2, is of the same order as
the horizontal scale.

The first singularities start near the maximum of M (b) in agreement with the
stability analysis. The boundary layer is then destabilized everywhere. For small times
(b, c) the symmetry of the initial conditions is preserved. At larger times, (d), the
symmetry is broken by the birth of new instabilities.

In order to more clearly understand the initiation and interactions of instabilities,
figure 8 depicts the position of the peaks as a function of time for the same sim-
ulation as in figure 7. At the beginning, a large number of peaks is produced; this
number then reduces to about 10 peaks. This reduction follows the reduction of the
average boundary layer thickness. This corresponds qualitatively to the fact that the
wavelength of the most unstable perturbation in the marginal stability study increases
when the average thickness decreases.

The various peaks attract each other. When two peaks merge, a new peak appears
in the space left empty. Because of this chaotic behaviour, the pattern loses its
symmetry after a time larger than 30 in this simulation. The number of peaks is then
rather constant on average and about one peak every 2π (i.e. about 10 peaks in this
simulation where the abscissae goes from −10π to 10π) .

The characteristic parabolic shape of the trajectories of two interacting peaks is
easy to understand at least qualitatively following a method originally applied to
Marangoni convection (Thess et al. 1995, 1997). Each peak induces in its vicinity
an attracting velocity vH (x), transporting its surroundings, so that the distance X
between them varies as

dX

dt
= 2vH (X). (6.2)

If we assume that the two peaks are close enough to interact but far enough apart so
that each one induces a velocity as if it were alone (vortex dynamics, Aref 1983), then
the attracting velocity can be computed. For one dimension and σ = 0, the closure
law needs the introduction of the Hilbert transform of the moment of the instability
(4.9). This closure law can be written in a different form, that has the advantage of
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using defined integrals rather than Cauchy improper integrals,

vH (X) =
1

2π

∫ ∞
0

M(X + x′)−M(X − x′)
x′

dx′. (6.3)

The numerator varies much more rapidly around x′ = X than the denominator and
far from this point the numerator is very small. Therefore, we can approximate the
1/x′ under the integral sign by 1/X and, using the parity of M(x), we get

v(X) ∼ 1

2πX

∫ ∞
0

M(X + x′)−M(X − x′) dx′ = − 1

2πX

∫ X

−X
M(x) dx. (6.4)

When the heads of the instabilities are cut beyond a limited range, this last integral
is roughly a constant I0 and thus

dX

dT
= − I0

πX
, (6.5)

or

X2 = X2
0 − 2

I0

π
t, (6.6)

where X0 is the initial distance between peaks. This last equations explains the
parabolic trajectories occurring when two peaks collapse. When the instabilities are
not limited by a maximum size Mmax, the distance between two isolated peaks can
still be closely fitted for a limited range of distances by a parabolic law although
we know that the integral in equation (6.4) slowly diverges as ln(X/(ts − t)1/2) in
agreement with table 1.

We carefully verified equations (6.4)–(6.6) in the presence of two isolated peaks.
However, this situation is not stable and soon other peaks appear. Quantitatively, we
can extract from figure 8 a value of I0 that gives the best fit to the behaviour of the
trajectories when they merge. We found a value of about 4 times smaller than the
integral of each singularity. This discrepancy is not understood although we think
that it is not produced by the approximation of (6.4) but rather by a collective effect
due to the other instabilities interacting at large range. It is remarkable that the same
parameter I0 seems to characterize all the interactions of two peaks.

6.3. Developed convection in the two-dimensional case

In two dimensions, we also run our program starting from initial conditions

M(x, y, 0) = 4 + cos (4πy/L) cos (2πx/L)

+ sin (2πx/L) sin (2πy/L) + cos (4πy/L) sin (6πx/L) (6.7)

where the size of the box L is 5. This functional dependence (except for the mean value
equal to 4) was used by Thess et al. (1997) in their study of Marangoni convection.
We verified that our program exactly reproduces their results when the term that
contains ∇H · vH is suppressed in equation (6.1), and when the thermal diffusivity
is small. In the case of Rayleigh–Bénard convection with only cooling from above,
figure 9 depicts various results as a function of time. We only show the case σ = 0
in this simulation. As seen for the closure relationship (2.41), increasing σ tends to
smooth the velocity field and eases the computation. As in one-dimensional geometry,
we first observe the increase of the boundary layer thickness and the growth of
instabilities that keep the geometry of the initial conditions (figure 9a, b). The cold
plumes and sheets start attracting each other according to the mechanism already
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Figure 9. Rayleigh–Bénard convection with uniform viscosity for a fluid cooled from above:
(a) the initial condition, (b) t = 1, (c) t = 4, (d) t = 8, (e) t = 13.5 and (f) t = 30.
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discussed (c, d). The initial conditions are still apparent in the pattern of convection.
The merging of some instabilities liberates enough space for a new instability to occur
as a plume structure in the middle of a roughly hexagonal cell (e). At a later stage, the
memory of the initial geometry is totally lost (f) but the topological characteristics
of the convection pattern (i.e. the number of cells, the length of cold downwellings,
etc.) remain the same.

6.4. Nusselt–Rayleigh relationship

Usually in a convection experiment, i.e. a liquid tank of height L, where a temperature
difference ∆T is imposed between the surface and the bottom, the convective activity
can be estimated by two non-dimensional numbers. The first is the Rayleigh number
Ra, the normalized temperature difference, and the second is the Nusselt number Nu,
the heat flux Q normalized by the heat flux that would occur by pure conduction.
These two numbers are

Ra =
αρ0g∆TL3

η0κ
, (6.8)

and

Nu =
LQ

κρ0Cp∆T
(6.9)

(the thermal conductivity is κρ0Cp where Cp is the heat capacity). These two numbers
are related by the dynamics, and we expect a model of convection to yield this
relationship.

In our model, the flow is entirely driven by boundary layer effects, with no influence
of the thickness L, which is supposed very large. Then the only possible relationship,
which does not depend on L, is

Nu = aRa1/3, with a =
Q

κρ0Cp∆T

(
η0κ

αρ0g∆T

)1/3

(6.10)

In our model, Nu and Ra1/3 are both infinite, being both proportional to the thickness
L, but the constant a is well defined and can be calculated as follows.

The average surface heat flow is given by

Q = −κρ0Cp
1

S

∫
S

∂θ

∂z
dS, (6.11)

where the integration is performed at the surface S of the convective fluid. Our model
deals with the variable M, the first moment of the temperature in the boundary
layer, and we need to make some assumptions about the vertical temperature profile
to calculate the heat flux (6.11). At short times, temperature satisfies the diffusion
equation, and varies with z like a complementary error function; therefore θ =
θS erfc (z/H) where H is the thickness of the boundary layer and ∂zθ = −2θS/(π

1/2H).
Using (2.44) that relates M and H (M = −θSH2/4), we then get

Q = κρ0Cp
1

S

∫
S

(−θS )3/2

(πM)1/2
dS. (6.12)

This last dimensional expression can be written with a non-dimensional M as

Q = −κρ0CpθS

(−αρ0gθS

η0κ

)1/3
1

S

∫
S

1

(πM)1/2
dS, (6.13)
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Figure 10. Evolution of Nu/Ra1/3 as a function of time, in one-dimensional (solid line) and
two-dimensional (dashed line) simulations.

or by the introduction of a dummy length L, and noting that ∆T = −2θS since
we need to symmetrize the system with two boundary layers to fit with the usual
Rayleigh–Bénard configuration,

Nu =

(
1

S

∫
S

1

24/3(πM)1/2
dS

)
Ra1/3, (6.14)

in agreement with the functional form of equation (6.10).
Figure 10 depicts the average over the surface of (2)−4/3(πM)−1/2, as a function of

time, in the one-dimensional case (solid line), and two-dimensional case (dashed line),
these two simulations being performed with Mmax = 30. In the one-dimensional case,
the initial conditions are simply a very smallM; in the two-dimensional case we use the
same boundary conditions as in figure 9. In the one-dimensional case, at the beginning,
the thermal boundary thickness is very small and grows by simple diffusion following
a t−1/2 law. This behaviour is not as clearly seen for the two-dimensional case, as we
start in a regime where the boundary layer is already unstable. When the convection
starts the heat flow increases and then stabilizes around Nu/Ra1/3 close to 0.22.

The mean value of Nu/Ra1/3 is slightly dependent on the choice of Mmax (figure 11):
it increases from 0.165 for Mmax = 10 to 0.235 for Mmax = 40 (one-dimensional case).
The numerical experiment may indicate an asymptotic value for very large Mmax.
However there may be no truly asymptotic value, which would reflect some departure
from the Ra1/3 law. Indeed we may expect that the thickness ∼M1/2 associated with
the maximum possible value of M scales with the thickness L.

Our Rayleigh–Nusselt relationship can be compared with results found in the
literature. For convection at infinite Prandtl number, and heated from below, simple
boundary layer models (Turcotte & Oxburg 1967) give Nu ∼ 0.294 Ra1/3. Two- and
three-dimensional numerical simulations (McKenzie, Roberts & Weiss 1974; Travis,
Olson & Schubert 1990; Tackley 1996; Sotin & Labrosse 1999) and laboratory
experiments at very high Prandtl number (Giannandrea & Christensen 1993; Manga
& Weeraratne 1999) provide similar values (although the exponent seems smaller
than 1/3). Laboratory experiments by Goldstein, Chiang & See (1990) give Nu ∼
0.066 Ra1/3 but for no-slip boundary conditions and a moderate Prandtl number.
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Figure 11. Dependence of the Nusselt number on the maximum moment Mmax.

7. Conclusion

We have shown that the equations of three-dimensional convection in the limit of
high Rayleigh and Prandtl numbers can be reduced to two-dimensional equations
written at the surface of the convective fluid. These equations express how the moment
of the temperature through the thermal boundary layer is transported and modified by
the surface two-dimensional velocity field. They are universal, i.e. they do not contain
any physical parameters. This reduction from three to two dimensions provides an
elegant tool to study the initiation of thermal plumes and line instabilities.

Various generalizations of the present theory can be done in a straightforward
manner. The role of a depth-dependent viscosity in the thermal boundary layer is
controlled by a parameter σ. However we could have also considered depth-dependent
viscosity variations in the deep interior. As an example the viscosity of silicated planets
increases significantly with depth. This can be very easily taken into account by a
modification of the closure law. Another modification of the closure law could allow
us to study the interaction of a top boundary layer with a bottom boundary layer. In
this case two transport equations would have be coupled through two closure laws
relating linearly in the spectral space the surface velocity of each boundary layer to
the two temperature moments.

Apart from its utility in understanding the development of instabilities, their inter-
actions, the similarities and differences between Marangoni convection and thermal
convection, our approach suggests a method to study a very important geophysical
problem, namely the interactions between plate tectonics and the underlying high-
Rayleigh-number convection. In our planet, the rheology of the surface boundary
layer is highly nonlinear and therefore the present theory does not apply. However,
we have purposely used as long as possible stresses rather than velocities in deriving
the equations of this paper in order to distinguish what is related to the assumption
of a Newtonian rheology and what is perfectly general. The relationships between
stresses and temperature moment (2.20), (2.21) and the transport equation (2.43) are
independent of the rheology. This means we are able to reduce the three-dimensional
hydrodynamic problem of plate tectonics to two-dimensional surface equations even
in the case of a very complex relationship between stresses and velocities. Of course, in
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this case the equivalent of the closure relationship will be only obtained numerically
and a vertical vorticity would potentially be excited.
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